Wilks Coefficient Formula Chart for Men


Published: Monday, 23 April 2012, by Gordon Wayne Watts of Lakeland, Florida, U.S.A. (between Tampa & Orlando, Fla.) – www.GordonWatts.com / www.GordonWayneWatts.com

Last Updated: Wednesday, 25 April 2012

There were two (2) updates added:

#1 – I added the Kutin correction for applying the Watts coefficient to non-hollow 3-Dimensional objects, and also:

#2 – I offered clarification on some definitions.


These coefficients, developed by Robert Wilks, of Australia, are widely used in powerlifting to determine the best lifter (or best individual lift), when comparing lifters of different bodyweights.


To use the chart, you look on the chart for the “Wilks Coefficient” for the lifter's bodyweight in kilograms. (Note: To convert the Wilks coefficients for use with pounds, take the number of pounds a lifter weighs, and divide by 2.2046 to get the number of kilograms the lifter weighs.) Then, once you've found the proper coefficient, you multiply that number by the lifter's total. The resulting number is the lifter's “Wilks total,” and whoever has the largest total (or individual lift) is considered “the best lifter by Wilks” (as there are other formulas used) –or simply the “best lifter.”


For example, if a 40-kg lifter has a total of 200 kg, and an 80-kg lifter has a total of 398 kg, one might initially think that the lighter lifter is stronger (since he lifted 5-times his own bodyweight, whereas the 80-kg lifter lifted only 4.975-times his own bodyweight). However, the lighter lifter only has a “Wilks total” of 1.335422866287198030-times-200-kg, or a 267.084573257439606-kg Wilks total. On the other hand, the heavier lifter has a “Wilks total” of 0.682698590168316912-times-398-kg, or a 271.714038886990130976-kg Wilks total, slightly larger than that of the other lifter. So, the heavier lifter, even though he didn't quite lift 5-times his bodyweight, like the lighter lifter, would nonetheless be declared the “best lifter” by the Wilks formula.


Here are the formulas used for all the coefficients shown on the included graph:


WILKS Coefficient for men = (500)/[(–216.0475144) + (16.2606339*x) – (0.002388645*x^2) – (0.00113732*x^3) + (0.00000701863*x^4) – (0.00000001291*x^5)]

(Shown in blue on the included graph: Blue for boys)


Where x = bodyweight in kilograms (both here and below)


WILKS Coefficient for women = (500)/[(594.31747775582) – (27.23842536447*x) + (0.82112226871*x^2) – (0.00930733913*x^3) + (0.00004731582*x^4) – (0.00000009054*x^5)]

(Shown in pink on the included graph: Pink for girls)


Note: I have no idea how Wilks derives the factors for his equation, but I suspect that he took a lot of available data from powerlifting competitions, and asked a computer to model a 'best-fit' 5th-order equation to match the data.


WATTS Coefficient for men = [(51.075/x)^(2/3)] (Caution: Strange, mind-bending “math-talk” follows...)

(Shown in green on the included graph: Green for Gordon – as in Gordon Wayne Watts, the creator of the WATTS coefficient.)


Note: While I have no idea how Wilks derives **his** coefficients, I can give an explanation for my formula: First off, since Wilks' formula is very widely used, and his coefficient for men is 1.00 at a weight close to 51.075-kg (estimated to the nearest 25-thousandths by manual calculation), I have “normalized” my calculations to match his as closely as reasonably possible at this weight. Then, noting that surface area is a limiting factor of how much one can lift (due to the fact that the lifter is supporting the weight by the surface-area of his or her skin and structure), and surface area is merely a squared function, not a cubed function, its affect can be approximated by taking the ratio in mass and raising it to the 2/3rds-power. For example, is a Rubik's Cube of 2x2x2 inches square was placed on the ground and made to support a weight, its base and top (both under applied pressure) would only be four-square inches (2x2), not eight (its mass), and thus only be expected to support FOUR times as more weight than a smaller cube of 1x1x1 inches square (NOT eight, the ratio of difference in masses). So, here, the mass ratio, 8, is raised to the 2/3rds-power, and results in a factor of 4, as demonstrated above. Thus, the WATTS Coefficient Formula Chart for Men uses this 2/3rds-power correction factor. NOTE: Other factors (limb length, asymmetrical increases, possible hormonal differences, etc.) might affect strength, since the body does not necessarily hold the same shape as mass increases. Also, the ROM (range of motion) of a larger lifter changes, which affects things, particularly, the deadlift, where shorter lifters are closer to lockout at the start of the lift. Therefore, I do not know if the WATTS formula is more accurate than the WILKS formula in determining “best lifter.” It is only a hypothesis, guess, theory, or “best guesstimate” as to whether my formula is more accurate: Only by a review of recent lifting competitions could this theory be tested. In any event, the included graphs demonstrate that the WATTS coefficient is quite close to the WILKS coefficient FOR ALL VALUES in the range of lifters' wights listed, and that for real light lifters (under about 51.0-kg) and real heavy lifters (above about 115.6-kg), the WILKS coefficient is slightly more helpful to them, but in between about 51.0-kg and 115.6-kg (that is, for most lifters), the WATTS coefficient is more helpful to them. While it is uncertain if the WATTS coefficient is more accurate, it (first) is based on solid laws of physics, and, (second) per Ockham's Razor, has a simple explanation, and (third and lastly) is very close to the widely-used Wilks formula; so, good evidences supports the (as yet untested) theory that the Watts coefficient might possibly be more accurate in comparing lifters of different weights and/or genders than the more widely-used Wilks formula.


#1 – First UPDATE: Since publishing this initially, I have found some errors in my initial application of the 'Watts coefficient.' My friend, Ed Kutin, a very smart powerlifter, apparently paid attention in his math, physics, and statistics classes when studying for his vocation in financial service, and he gave me excellent feedback when I asked for his thoughts on my formula – Ed said: “In particular, to use your ruibik's cube example, your assertion is correct only if the cubes are hollow. As people are not hollow, the example breaks down.” – I now think I know how to correct for that: When taking a lift, and then thinking about multiplying it by the Watts coefficient (like you would do for the Wilks coefficient), you must *first* add the person's body-weight to the lift – for, after all, the lifter is _always_ lifting (or at least supporting) his or her body-weight AND the weight being lifted. In a squat, for example, the lifter would be squatting at least his/her upper body mass. And, in the bench press, only the arms would 'add to' the weight being lifted, but the lifter's *full* body-weight is still supported by his/her back -as it comes in contact with the bench press bench.


For example, if a 40-kg lifter has a total of 200 kg, and an 80-kg lifter has a total of 398 kg, one might initially apply the Watts coefficient as follows:


Lighter lifter has a WATTS total of: 1.176970531562958400-times-200-kg = 235.39410631259168-kg 'Watts total'

Heavier lifter has a WATTS total of: 0.741444973911064752-times-398-kg = 295.095099616603771296-kg 'Watts total' (note that while the heavier lifter wins using both Wilks and Watts, he wins by a much larger margin with the Watts formula, since Wilks favors very light lifters more.)


However, each lifter is also carrying around his bodyweight, so that must be accounted for – here is an example of how to do so:


Lighter lifter has a WATTS total of: 1.176970531562958400-times (200 + 40 + 40 +40) kg (add his bodyweight three times, once for each power-lift)

Lighter lifter has a WATTS total of: 1.176970531562958400-times (320-kg) = 376.630570100146688-kg WATTS total, with the Kutin bodyweight correction applied.


Heavier lifter has a WATTS total of: 0.741444973911064752-times (398 + 80 + 80 + 80) kg (add his bodyweight three times, once for each power-lift)

Heavier lifter has a WATTS total of: 0.741444973911064752-times (638-kg) = 473.041893355259311776


So, you can see here that merely using the Watts coefficient, the heavier lifter won by a factor of 1.2536, but when you apply the Kutin application correction for non-hollow 3-dimensional objects, he wins by a factor of 1.25598, slightly better, since he was also supporting more mass per surface area, being a larger lifter (and the Kutin correction accounted for that).


As an extreme case, remember the Rukik's cube example: When doubling the height, the volume goes up eight (8) times, whereas the surface area only goes up four (4) times, thus the increase in weight supported per surface area increases in a linear fashion -for heavier lifters. Math is cool! :D


So, I shall give my friend, Ed Kutin, credit for giving me the idea. You can Google his name to see what he's up to. Recently, he coached his 10-year old daughter, Naomi, to a world record in the squat. Yes, a 'World' record (not merely an age-class record), as she beat a 44-year old German lady for the record. Her height confers good leverage advantages, to be sure, but you can be sure that she worked hard training (and her father worked hard coaching) to help a 10-year-old grade school student to beat a middle-aged powerlifting champion, while adhering to safe and healthy training methods. (His son is also setting records in his age class.) So, you can be sure that Ed knows about powerlifting!


So, of course, to test the accuracy of either version of WATTS or compare it with WILKS, you would have to review some recent powerlifting competitions. If a comparison formula is accurate, you would expect all of the champions to have similar values, and that a linear regression of the data points would produce a graph plot that has a flat slope and a very low p-value, and a very high 'R' value (indicating a tight pattern). The more accurate a formula, the closer the slope (of score versus bodyweight) would approach zero, and the lower the p-value, and the higher the 'R' value. This would allow comparison of WILKS and either version of WATTS. (End of 1st update.)


WATTS Coefficient for women – Since so many complex hormonal 'chemical' and 'biological' factors are involved here, an exact formula is impossible for mere mortals. (It was difficult enough simply correcting for the laws of 'physics' relative to differences in physical size for the men's formula.) Rather → When computing values for women, use the following method: Compute a “tentative” value, using the men's value, and then, using several recent years of results from strictly-tested drug-free powerlifting federations, obtain the average values for the top finishers in both men's and women's competitions for the weight-class in question, and take the average for each, obtaining an overall “men's average” and an overall “women's average” of the top several finishers over a period of several recent years. Then, take the ratio of the men's average to the women's average, which should yield a number slightly greater then 1.0, and use this “gender-correction” factor to “boost up” the previous 'tentative' final result you just calculated using the men's value by multiplying the “correction factor” by your previous result. This final result should make comparison of women's results on level playing ground. CAVEAT: When calculating averages from recent powerlifting competitions, it is imperative to ensure these are strictly-tested drug-free competitions. If this is not done, then results will be inaccurate, since the women's averages will more closely approach the men's averages, thus unfairly raising the bar, and biasing the results against the women who are trying to be fairly compared here.

(NOT shown on the included graph.)


REDNECK Coefficient for men = [51.075/x] (Note: The 'Redneck coefficient for men' merely measures “pound-for-pound” comparison, so, for example, a lifter who weighs 102.15-kg will have a coefficient exactly half that of a lifter weighing 51.075-kg. This is because Rednecks are just dumb hillbilly country bumpkins who INCORRECTLY think that lifting ability goes up as a linear function with weight or mass – It does not: For example, the Empire State Building weighs a lot more than an average powerlifter, yet this structure can NOT support five (5) times its own weight like some elite-level men's powerlifters. Heck, it can BARELY supports it's **own** weight, since, of course, the base of the structure's surface area is merely a 2nd-order, “squared” function, whereas the mass (e.g., weight) of the structure is a 3rd-order, “cubed” function. A small ant, by contrast, can pick up around a HUNDRED times its own bodyweight, for the same reason here, based on on the laws of physics.)

(Shown in red on the included graph: Red for redneck.)


REDNECK Coefficient for women – Since country-bumpkin hillbillies Rednecks are really not that smart (heck, I should know: I am one!), there IS no 'coefficient for women' – Actually, their coefficient for men is NOT accurate, so why would they be smart enough to make one for women? LOL

(NOT shown on the included graph.)


#2 – Second UPDATE: Since publishing this initially, I also noticed that I might have foreign readers (who do not speak English as their native language), and, as such, I should define terms like “Redneck.”


Redneck – An informal slang term used in reference to poor, rural, working-class, uneducated, and usually White, farmers, especially from the southern United States. Synonyms include 'cracker' (especially regarding Georgia and Florida) and 'hillbilly' (especially regarding Appalachia and the Ozarks).


Hillbilly – A colloquial slang term for a person from the backwoods or a remote mountain area.


Country bumpkin – A derogatory or insulting term for an uneducated person, usually from a small, backwoods southern United States town out in the country; someone who speaks or behaves in a manner that indicates lack of understanding of the ever changing, modern world and who does not have much experience of city life.


Synonyms for 'country bumpkin' include hayseed, chawbacon, rube, redneck, hick, yokel, village, villager, countryman, countrywoman, bumpkin, country cousin, and backwoodsman.


Google image search: http://www.google.com/search?q=country+bumpkin&um=1&ie=UTF-8&hl=en&tbm=isch&source=og&sa=N&tab=wi&ei=r6KXT5SKNbKq0AGHl-T5Bg&biw=1680&bih=955&sei=sqKXT5xb56jQAeCjuNkG#um=1&hl=en&tbm=isch&sa=1&q=country+bumpkin+redneck+hillbilly&oq=country+bumpkin+redneck+hillbilly&aq=f&aqi=&aql=&gs_nf=1&gs_l=img.3...5921.8179.5.8288.10.10.0.10.10.0.0.0..0.0.PXkcqUcyktk&pbx=1&bav=on.2,or.r_gc.r_pw.r_qf.,cf.osb&fp=e29e530bea455f63&biw=1680&bih=955


Yahoo! Image search: http://images.search.yahoo.com/search/images;_ylt=A0oG7h0Fo5dP5EkAZ5JXNyoA?p=country+bumpkin+redneck+hillbilly&fr=yfp-t-701&fr2=piv-web


(Click on those Internet IMAGE searches – they are funny!)


(End of 2nd update.)


Here is the graphing program I used:

Graph, version 4.3, build 384, Copyright © 2007

by: http://www.padowan.dk

Copyright © 2009 by Ivan Johansen


For further information – Related links:

http://en.wikipedia.org/wiki/Wilks_Coefficient


http://www.powerliftingwatch.com/node/780


http://www.powerlifting-ipf.com/fileadmin/data/Downloads/Wilksformula.pdf


Bodyweight in kilograms (kg)

Wilks formula for men

40.0

1.335422866287198030

40.1

1.331073584150518150

40.2

1.326758160010707220

40.3

1.322476215539588220

40.4

1.318227378030363030

40.5

1.314011280293613990

40.6

1.309827560555605620

40.7

1.305675862358827160

40.8

1.301555834464718690

40.9

1.297467130758524960

41.0

1.293409410156222940

41.1

1.289382336513470500

41.2

1.285385578536525280

41.3

1.281418809695083960

41.4

1.277481708136994160

41.5

1.273573956604791900

41.6

1.269695242354019270

41.7

1.265845257073278310

41.8

1.262023696805977980

41.9

1.258230261873732710

42.0

1.254464656801371850

42.1

1.250726590243520860

42.2

1.247015774912715620

42.3

1.243331927509013010

42.4

1.239674768651061180

42.5

1.236044022808594640

42.6

1.232439418236319700

42.7

1.228860686909157100

42.8

1.225307564458809330

42.9

1.221779790111621260

43.0

1.218277106627703290

43.1

1.214799260241287260

43.2

1.211346000602286170

43.3

1.207917080719029230

43.4

1.204512256902145040

43.5

1.201131288709565920

43.6

1.197773938892627430

43.7

1.194439973343237710

43.8

1.191129161042091980

43.9

1.187841274007908040

44.0

1.184576087247659540

44.1

1.181333378707784070

44.2

1.178112929226343920

44.3

1.174914522486117830

44.4

1.171737944968602840

44.5

1.168582985908905390

44.6

1.165449437251502020

44.7

1.162337093606849870

44.8

1.159245752208828280

44.9

1.156175212872992710

45.0

1.153125277955623150

45.1

1.150095752313549340

45.2

1.147086443264735670

45.3

1.144097160549609050

45.4

1.141127716293113530

45.5

1.138177924967475690

45.6

1.135247603355665340

45.7

1.132336570515536510

45.8

1.129444647744633870

45.9

1.126571658545650320

46.0

1.123717428592521670

46.1

1.120881785697144850

46.2

1.118064559776706080

46.3

1.115265582821606350

46.4

1.112484688863971130

46.5

1.109721713946732260

46.6

1.106976496093269650

46.7

1.104248875277601240

46.8

1.101538693395109530

46.9

1.098845794233793530

47.0

1.096170023446035130

47.1

1.093511228520869190

47.2

1.090869258756746920

47.3

1.088243965234782300

47.4

1.085635200792471560

47.5

1.083042819997876140

47.6

1.080466679124259330

47.7

1.077906636125167680

47.8

1.075362550609947770

47.9

1.072834283819689700

48.0

1.070321698603588620

48.1

1.067824659395715740

48.2

1.065343032192190700

48.3

1.062876684528747200

48.4

1.060425485458683860

48.5

1.057989305531192940

48.6

1.055568016770058970

48.7

1.053161492652720350

48.8

1.050769608089686400

48.9

1.048392239404303030

49.0

1.046029264312860130

49.1

1.043680561905033870

49.2

1.041346012624657520

49.3

1.039025498250814150

49.4

1.036718901879245160

49.5

1.034426107904068370

49.6

1.032147001999799710

49.7

1.029881471103672600

49.8

1.027629403398249420

49.9

1.025390688294319250

50.0

1.023165216414076580

50.1

1.020952879574575550

50.2

1.018753570771454400

50.3

1.016567184162925130

50.4

1.014393615054023240

50.5

1.012232759881112660

50.6

1.010084516196641090

50.7

1.007948782654141010

50.8

1.005825458993471700

50.9

1.003714446026297960

51.0

1.001615645621800800

51.1

0.999528960692616129

51.2

0.997454295180996924

51.3

0.995391554045194931

51.4

0.993340643246057756

51.5

0.991301469733837413

51.6

0.989273941435206442

51.7

0.987257967240477786

51.8

0.985253456991024722

51.9

0.983260321466897195

52.0

0.981278472374630972

52.1

0.979307822335246156

52.2

0.977348284872431601

52.3

0.975399774400911897

52.4

0.973462206214993641

52.5

0.971535496477287771

52.6

0.969619562207604820

52.7

0.967714321272019999

52.8

0.965819692372105090

52.9

0.963935595034324189

53.0

0.962061949599590391

53.1

0.960198677212980580

53.2

0.958345699813605537

53.3

0.956502940124632634

53.4

0.954670321643458440

53.5

0.952847768632028620

53.6

0.951035206107302554

53.7

0.949232559831860159

53.8

0.947439756304648450

53.9

0.945656722751865407

54.0

0.943883387117978797

54.1

0.942119678056877610

54.2

0.940365524923153830

54.3

0.938620857763512319

54.4

0.936885607308306611

54.5

0.935159704963198469

54.6

0.933443082800939108

54.7

0.931735673553270002

54.8

0.930037410602941269

54.9

0.928348227975845632

55.0

0.926668060333266011

55.1

0.924996842964234842

55.2

0.923334511778003244

55.3

0.921681003296618189

55.4

0.920036254647605891

55.5

0.918400203556759620

55.6

0.916772788341030226

55.7

0.915153947901517661

55.8

0.913543621716561828

55.9

0.911941749834931127

56.0

0.910348272869107077

56.1

0.908763131988663448

56.2

0.907186268913738345

56.3

0.905617625908597737

56.4

0.904057145775288925

56.5

0.902504771847382494

56.6

0.900960447983801320

56.7

0.899424118562735203

56.8

0.897895728475639763

56.9

0.896375223121318226

57.0

0.894862548400084777

57.1

0.893357650708008163

57.2

0.891860476931234272

57.3

0.890370974440386409

57.4

0.888889091085042056

57.5

0.887414775188284871

57.6

0.885947975541330761

57.7

0.884488641398226835

57.8

0.883036722470622093

57.9

0.881592168922608730

58.0

0.880154931365632929

58.1

0.878724960853474060

58.2

0.877302208877291227

58.3

0.875886627360736083

58.4

0.874478168655130909

58.5

0.873076785534710927

58.6

0.871682431191929854

58.7

0.870295059232827716

58.8

0.868914623672459967

58.9

0.867541078930386962

59.0

0.866174379826222855

59.1

0.864814481575243025

59.2

0.863461339784049105

59.3

0.862114910446290766

59.4

0.860775149938443374

59.5

0.859442015015640666

59.6

0.858115462807561625

59.7

0.856795450814370720

59.8

0.855481936902710716

59.9

0.854174879301747247

60.0

0.852874236599264389

60.1

0.851579967737810457

60.2

0.850292032010893276

60.3

0.849010389059224188

60.4

0.847734998867010068

60.5

0.846465821758292631

60.6

0.845202818393334330

60.7

0.843945949765050159

60.8

0.842695177195484673

60.9

0.841450462332333563

61.0

0.840211767145509130

61.1

0.838979053923749009

61.2

0.837752285271267517

61.3

0.836531424104448989

61.4

0.835316433648582499

61.5

0.834107277434637360

61.6

0.832903919296078805

61.7

0.831706323365723272

61.8

0.830514454072632721

61.9

0.829328276139047407

62.0

0.828147754577356567

62.1

0.826972854687106474

62.2

0.825803542052045307

62.3

0.824639782537204333

62.4

0.823481542286014855

62.5

0.822328787717460443

62.6

0.821181485523263917

62.7

0.820039602665108612

62.8

0.818903106371893423

62.9

0.817771964137021158

63.0

0.816646143715719729

63.1

0.815525613122395716

63.2

0.814410340628019843

63.3

0.813300294757543929

63.4

0.812195444287348865

63.5

0.811095758242723185

63.6

0.810001205895371799

63.7

0.808911756760954480

63.8

0.807827380596653677

63.9

0.806748047398771253

64.0

0.805673727400353751

64.1

0.804604391068845790

64.2

0.803540009103771195

64.3

0.802480552434441501

64.4

0.801425992217691425

64.5

0.800376299835640963

64.6

0.799331446893483732

64.7

0.798291405217301201

64.8

0.797256146851902461

64.9

0.796225644058689187

65.0

0.795199869313545446

65.1

0.794178795304752009

65.2

0.793162394930924859

65.3

0.792150641298977530

65.4

0.791143507722106995

65.5

0.790140967717802761

65.6

0.789142995005878863

65.7

0.788149563506528458

65.8

0.787160647338400720

65.9

0.786176220816699711

66.0

0.785196258451304976

66.1

0.784220734944913540

66.2

0.783249625191203036

66.3

0.782282904273015687

66.4

0.781320547460562858

66.5

0.780362530209649911

66.6

0.779408828159921099

66.7

0.778459417133124228

66.8

0.777514273131394829

66.9

0.776573372335559593

67.0

0.775636691103458802

67.1

0.774704205968287529

67.2

0.773775893636955332

67.3

0.772851730988464242

67.4

0.771931695072304763

67.5

0.771015763106869689

67.6

0.770103912477885485

67.7

0.769196120736861013

67.8

0.768292365599553372

67.9

0.767392624944450654

68.0

0.766496876811271365

68.1

0.765605099399480324

68.2

0.764717271066820828

68.3

0.763833370327862850

68.4

0.762953375852567101

68.5

0.762077266464864732

68.6

0.761205021141252473

68.7

0.760336619009403041

68.8

0.759472039346790587

68.9

0.758611261579331026

69.0

0.757754265280037036

69.1

0.756901030167687560

69.2

0.756051536105511619

69.3

0.755205763099886259

69.4

0.754363691299048452

69.5

0.753525300991820790

69.6

0.752690572606350778

69.7

0.751859486708863573

69.8

0.751032024002428006

69.9

0.750208165325735698

70.0

0.749387891651893136

70.1

0.748571184087226536

70.2

0.747758023870099325

70.3

0.746948392369742114

70.4

0.746142271085094976

70.5

0.745339641643661905

70.6

0.744540485800377291

70.7

0.743744785436484269

70.8

0.742952522558424796

70.9

0.742163679296741317

71.0

0.741378237904989874

71.1

0.740596180758664519

71.2

0.739817490354132899

71.3

0.739042149307582874

71.4

0.738270140353980034

71.5

0.737501446346035989

71.6

0.736736050253187288

71.7

0.735973935160584865

71.8

0.735215084268093859

71.9

0.734459480889303696

72.0

0.733707108450548315

72.1

0.732957950489936405

72.2

0.732211990656391548

72.3

0.731469212708702128

72.4

0.730729600514580922

72.5

0.729993138049734229

72.6

0.729259809396940435

72.7

0.728529598745137912

72.8

0.727802490388522121

72.9

0.727078468725651832

73.0

0.726357518258564334

73.1

0.725639623591899550

73.2

0.724924769432032929

73.3

0.724212940586217034

73.4

0.723504121961731715

73.5

0.722798298565042762

73.6

0.722095455500968953

73.7

0.721395577971857382

73.8

0.720698651276766987

73.9

0.720004660810660178

74.0

0.719313592063602460

74.1

0.718625430619969978

74.2

0.717940162157664881

74.3

0.717257772447338415

74.4

0.716578247351621659

74.5

0.715901572824363821

74.6

0.715227734909877992

74.7

0.714556719742194294

74.8

0.713888513544320325

74.9

0.713223102627508812

75.0

0.712560473390532405

75.1

0.711900612318965527

75.2

0.711243505984473186

75.3

0.710589141044106691

75.4

0.709937504239606181

75.5

0.709288582396709889

75.6

0.708642362424470081

75.7

0.707998831314575569

75.8

0.707357976140680750

75.9

0.706719784057741082

76.0

0.706084242301354929

76.1

0.705451338187111708

76.2

0.704821059109946263

76.3

0.704193392543499393

76.4

0.703568326039484480

76.5

0.702945847227060134

76.6

0.702325943812208792

76.7

0.701708603577121215

76.8

0.701093814379586804

76.9

0.700481564152389681

77.0

0.699871840902710465

77.1

0.699264632711533683

77.2

0.698659927733060761

77.3

0.698057714194128518

77.4

0.697457980393633116

77.5

0.696860714701959405

77.6

0.696265905560415601

77.7

0.695673541480673234

77.8

0.695083611044212322

77.9

0.694496102901771702

78.0

0.693911005772804470

78.1

0.693328308444938469

78.2

0.692747999773441774

78.3

0.692170068680693120

78.4

0.691594504155657217

78.5

0.691021295253364909

78.6

0.690450431094398101

78.7

0.689881900864379442

78.8

0.689315693813466670

78.9

0.688751799255851602

79.0

0.688190206569263706

79.1

0.687630905194478200

79.2

0.687073884634828651

79.3

0.686519134455723995

79.4

0.685966644284169967

79.5

0.685416403808294861

79.6

0.684868402776879603

79.7

0.684322630998892063

79.8

0.683779078343025590

79.9

0.683237734737241704

80.0

0.682698590168316912

80.1

0.682161634681393603

80.2

0.681626858379534971

80.3

0.681094251423283946

80.4

0.680563804030226058

80.5

0.680035506474556228

80.6

0.679509349086649421

80.7

0.678985322252635124

80.8

0.678463416413975624

80.9

0.677943622067048029

81.0

0.677425929762730006

81.1

0.676910330105989185

81.2

0.676396813755476208

81.3

0.675885371423121372

81.4

0.675375993873734826

81.5

0.674868671924610308

81.6

0.674363396445132357

81.7

0.673860158356386986

81.8

0.673358948630775767

81.9

0.672859758291633304

82.0

0.672362578412848051

82.1

0.671867400118486445

82.2

0.671374214582420321

82.3

0.670883013027957572

82.4

0.670393786727476027

82.5

0.669906527002060508

82.6

0.669421225221143037

82.7

0.668937872802146167

82.8

0.668456461210129388

82.9

0.667976981957438605

83.0

0.667499426603358624

83.1

0.667023786753768649

83.2

0.666550054060800732

83.3

0.666078220222501163

83.4

0.665608276982494770

83.5

0.665140216129652087

83.6

0.664674029497759382

83.7

0.664209708965191494

83.8

0.663747246454587473

83.9

0.663286633932528973

84.0

0.662827863409221398

84.1

0.662370926938177743

84.2

0.661915816615905127

84.3

0.661462524581593984

84.4

0.661011043016809882

84.5

0.660561364145187949

84.6

0.660113480232129879

84.7

0.659667383584503491

84.8

0.659223066550344822

84.9

0.658780521518562723

85.0

0.658339740918645933

85.1

0.657900717220372614

85.2

0.657463442933522316

85.3

0.657027910607590354

85.4

0.656594112831504569

85.5

0.656162042233344452

85.6

0.655731691480062608

85.7

0.655303053277208540

85.8

0.654876120368654724

85.9

0.654450885536324965

86.0

0.654027341599924992

86.1

0.653605481416675296

86.2

0.653185297881046168

86.3

0.652766783924494930

86.4

0.652349932515205329

86.5

0.651934736657829075

86.6

0.651521189393229516

86.7

0.651109283798227400

86.8

0.650699012985348744

86.9

0.650290370102574749

87.0

0.649883348333093774

87.1

0.649477940895055335

87.2

0.649074141041326105

87.3

0.648671942059247914

87.4

0.648271337270397709

87.5

0.647872320030349474

87.6

0.647474883728438076

87.7

0.647079021787525035

87.8

0.646684727663766183

87.9

0.646291994846381211

88.0

0.645900816857425073

88.1

0.645511187251561235

88.2

0.645123099615836756

88.3

0.644736547569459180

88.4

0.644351524763575214

88.5

0.643968024881051196

88.6

0.643586041636255316

88.7

0.643205568774841584

88.8

0.642826600073535528

88.9

0.642449129339921605

89.0

0.642073150412232309

89.1

0.641698657159138961

89.2

0.641325643479544169

89.3

0.640954103302375928

89.4

0.640584030586383373

89.5

0.640215419319934140

89.6

0.639848263520813341

89.7

0.639482557236024125

89.8

0.639118294541589823

89.9

0.638755469542357653

90.0

0.638394076371803976

90.1

0.638034109191841080

90.2

0.637675562192625500

90.3

0.637318429592367832

90.4

0.636962705637144046

90.5

0.636608384600708282

90.6

0.636255460784307112

90.7

0.635903928516495255

90.8

0.635553782152952733

90.9

0.635205016076303462

91.0

0.634857624695935248

91.1

0.634511602447821197

91.2

0.634166943794342507

91.3

0.633823643224112646

91.4

0.633481695251802892

91.5

0.633141094417969226

91.6

0.632801835288880572

91.7

0.632463912456348361

91.8

0.632127320537557422

91.9

0.631792054174898173

92.0

0.631458108035800111

92.1

0.631125476812566584

92.2

0.630794155222210842

92.3

0.630464138006293339

92.4

0.630135419930760299

92.5

0.629807995785783514

92.6

0.629481860385601372

92.7

0.629157008568361103

92.8

0.628833435195962241

92.9

0.628511135153901271

93.0

0.628190103351117474

93.1

0.627870334719839944

93.2

0.627551824215435771

93.3

0.627234566816259384

93.4

0.626918557523503039

93.5

0.626603791361048448

93.6

0.626290263375319526

93.7

0.625977968635136267

93.8

0.625666902231569719

93.9

0.625357059277798066

94.0

0.625048434908963792

94.1

0.624741024282031927

94.2

0.624434822575649371

94.3

0.624129824990005266

94.4

0.623826026746692438

94.5

0.623523423088569864

94.6

0.623222009279626195

94.7

0.622921780604844286

94.8

0.622622732370066756

94.9

0.622324859901862555

95.0

0.622028158547394531

95.1

0.621732623674287984

95.2

0.621438250670500219

95.3

0.621145034944191055

95.4

0.620852971923594321

95.5

0.620562057056890298

95.6

0.620272285812079121

95.7

0.619983653676855118

95.8

0.619696156158482095

95.9

0.619409788783669539

96.0

0.619124547098449746

96.1

0.618840426668055865

96.2

0.618557423076800845

96.3

0.618275531927957277

96.4

0.617994748843638134

96.5

0.617715069464678386

96.6

0.617436489450517501

96.7

0.617159004479082807

96.8

0.616882610246673717

96.9

0.616607302467846819

97.0

0.616333076875301795

97.1

0.616059929219768203

97.2

0.615787855269893077

97.3

0.615516850812129360

97.4

0.615246911650625165

97.5

0.614978033607113833

97.6

0.614710212520804823

97.7

0.614443444248275378

97.8

0.614177724663363005

97.9

0.613913049657058736

98.0

0.613649415137401167

98.1

0.613386817029371283

98.2

0.613125251274788046

98.3

0.612864713832204746

98.4

0.612605200676806113

98.5

0.612346707800306179

98.6

0.612089231210846888

98.7

0.611832766932897440

98.8

0.611577311007154376

98.9

0.611322859490442383

99.0

0.611069408455615831

99.1

0.610816953991461021

99.2

0.610565492202599138

99.3

0.610315019209389928

99.4

0.610065531147836052

99.5

0.609817024169488151

99.6

0.609569494441350596

99.7

0.609322938145787918

99.8

0.609077351480431920

99.9

0.608832730658089459

100.0

0.608589071906650904

100.1

0.608346371468999244

100.2

0.608104625602919866

100.3

0.607863830581010976

100.4

0.607623982690594675

100.5

0.607385078233628674

100.6

0.607147113526618645

100.7

0.606910084900531209

100.8

0.606673988700707549

100.9

0.606438821286777649

101.0

0.606204579032575146

101.1

0.605971258326052802

101.2

0.605738855569198582

101.3

0.605507367177952335

101.4

0.605276789582123081

101.5

0.605047119225306882

101.6

0.604818352564805319

101.7

0.604590486071544540

101.8

0.604363516229994904

101.9

0.604137439538091190

102.0

0.603912252507153389

102.1

0.603687951661808060

102.2

0.603464533539910251

102.3

0.603241994692465987

102.4

0.603020331683555301

102.5

0.602799541090255831

102.6

0.602579619502566958

102.7

0.602360563523334490

102.8

0.602142369768175883

102.9

0.601925034865406006

103.0

0.601708555455963428

103.1

0.601492928193337242

103.2

0.601278149743494406

103.3

0.601064216784807613

103.4

0.600851126007983668

103.5

0.600638874115992384

103.6

0.600427457823995990

103.7

0.600216873859279035

103.8

0.600007118961178803

103.9

0.599798189881016220

104.0

0.599590083382027264

104.1

0.599382796239294851

104.2

0.599176325239681226

104.3

0.598970667181760826

104.4

0.598765818875753626

104.5

0.598561777143458966

104.6

0.598358538818189850

104.7

0.598156100744707708

104.8

0.597954459779157637

104.9

0.597753612789004097

105.0

0.597553556652967071

105.1

0.597354288260958679

105.2

0.597155804514020250

105.3

0.596958102324259839

105.4

0.596761178614790198

105.5

0.596565030319667184

105.6

0.596369654383828616

105.7

0.596175047763033564

105.8

0.595981207423802070

105.9

0.595788130343355315

106.0

0.595595813509556197

106.1

0.595404253920850348

106.2

0.595213448586207567

106.3

0.595023394525063676

106.4

0.594834088767262793

106.5

0.594645528353000016

106.6

0.594457710332764524

106.7

0.594270631767283080

106.8

0.594084289727463944

106.9

0.593898681294341188

107.0

0.593713803559019409

107.1

0.593529653622618846

107.2

0.593346228596220879

107.3

0.593163525600813934

107.4

0.592981541767239769

107.5

0.592800274236140146

107.6

0.592619720157903895

107.7

0.592439876692614348

107.8

0.592260741009997162

107.9

0.592082310289368511

108.0

0.591904581719583657

108.1

0.591727552498985891

108.2

0.591551219835355836

108.3

0.591375580945861128

108.4

0.591200633057006453

108.5

0.591026373404583946

108.6

0.590852799233623948

108.7

0.590679907798346128

108.8

0.590507696362110946

108.9

0.590336162197371479

109.0

0.590165302585625591

109.1

0.589995114817368448

109.2

0.589825596192045389

109.3

0.589656744018005123

109.4

0.589488555612453282

109.5

0.589321028301406302

109.6

0.589154159419645647

109.7

0.588987946310672358

109.8

0.588822386326661942

109.9

0.588657476828419588

110.0

0.588493215185335709

110.1

0.588329598775341807

110.2

0.588166624984866669

110.3

0.588004291208792872

110.4

0.587842594850413619

110.5

0.587681533321389886

110.6

0.587521104041707881

110.7

0.587361304439636822

110.8

0.587202131951687020

110.9

0.587043584022568279

111.0

0.586885658105148590

111.1

0.586728351660413145

111.2

0.586571662157423639

111.3

0.586415587073277887

111.4

0.586260123893069727

111.5

0.586105270109849233

111.6

0.585951023224583211

111.7

0.585797380746115999

111.8

0.585644340191130551

111.9

0.585491899084109816

112.0

0.585340054957298400

112.1

0.585188805350664522

112.2

0.585038147811862242

112.3

0.584888079896193988

112.4

0.584738599166573346

112.5

0.584589703193488144

112.6

0.584441389554963804

112.7

0.584293655836526978

112.8

0.584146499631169446

112.9

0.583999918539312298

113.0

0.583853910168770380

113.1

0.583708472134717014

113.2

0.583563602059648977

113.3

0.583419297573351756

113.4

0.583275556312865055

113.5

0.583132375922448582

113.6

0.582989754053548073

113.7

0.582847688364761599

113.8

0.582706176521806114

113.9

0.582565216197484267

114.0

0.582424805071651468

114.1

0.582284940831183201

114.2

0.582145621169942599

114.3

0.582006843788748257

114.4

0.581868606395342305

114.5

0.581730906704358718

114.6

0.581593742437291880

114.7

0.581457111322465385

114.8

0.581321011095001084

114.9

0.581185439496788373

115.0

0.581050394276453723

115.1

0.580915873189330442

115.2

0.580781873997428677

115.3

0.580648394469405657

115.4

0.580515432380536160

115.5

0.580382985512683220

115.6

0.580251051654269064

115.7

0.580119628600246275

115.8

0.579988714152069188

115.9

0.579858306117665515

116.0

0.579728402311408187

116.1

0.579599000554087431

116.2

0.579470098672883063

116.3

0.579341694501337009

116.4

0.579213785879326040

116.5

0.579086370653034730

116.6

0.578959446674928634

116.7

0.578833011803727682

116.8

0.578707063904379782

116.9

0.578581600848034649

117.0

0.578456620512017838

117.1

0.578332120779804993

117.2

0.578208099540996305

117.3

0.578084554691291181

117.4

0.577961484132463118

117.5

0.577838885772334793

117.6

0.577716757524753345

117.7

0.577595097309565873

117.8

0.577473903052595137

117.9

0.577353172685615450

118.0

0.577232904146328788

118.1

0.577113095378341088

118.2

0.576993744331138750

118.3

0.576874848960065332

118.4

0.576756407226298452

118.5

0.576638417096826872

118.6

0.576520876544427789

118.7

0.576403783547644312

118.8

0.576287136090763134

118.9

0.576170932163792390

119.0

0.576055169762439720

119.1

0.575939846888090502

119.2

0.575824961547786285

119.3

0.575710511754203407

119.4

0.575596495525631798

119.5

0.575482910885953968

119.6

0.575369755864624177

119.7

0.575257028496647794

119.8

0.575144726822560830

119.9

0.575032848888409658

120.0

0.574921392745730910

120.1

0.574810356451531553

120.2

0.574699738068269143

120.3

0.574589535663832259

120.4

0.574479747311521106

120.5

0.574370371090028300

120.6

0.574261405083419825

120.7

0.574152847381116158

120.8

0.574044696077873574

120.9

0.573936949273765618

121.0

0.573829605074164747

121.1

0.573722661589724139

121.2

0.573616116936359680

121.3

0.573509969235232105

121.4

0.573404216612729315

121.5

0.573298857200448857

121.6

0.573193889135180567

121.7

0.573089310558889380

121.8

0.572985119618698301

121.9

0.572881314466871534

122.0

0.572777893260797784

122.1

0.572674854162973702

122.2

0.572572195340987508

122.3

0.572469914967502756

122.4

0.572368011220242270

122.5

0.572266482281972226

122.6

0.572165326340486397

122.7

0.572064541588590552

122.8

0.571964126224087004

122.9

0.571864078449759321

123.0

0.571764396473357179

123.1

0.571665078507581377

123.2

0.571566122770068993

123.3

0.571467527483378696

123.4

0.571369290874976210

123.5

0.571271411177219919

123.6

0.571173886627346623

123.7

0.571076715467457445

123.8

0.570979895944503877

123.9

0.570883426310273978

124.0

0.570787304821378709

124.1

0.570691529739238423

124.2

0.570596099330069481

124.3

0.570501011864871033

124.4

0.570406265619411915

124.5

0.570311858874217710

124.6

0.570217789914557931

124.7

0.570124057030433356

124.8

0.570030658516563492

124.9

0.569937592672374182

125.0

0.569844857801985350

125.1

0.569752452214198875

125.2

0.569660374222486610

125.3

0.569568622144978529

125.4

0.569477194304451007

125.5

0.569386089028315243

125.6

0.569295304648605804

125.7

0.569204839501969305

125.8

0.569114691929653225

125.9

0.569024860277494845

126.0

0.568935342895910323

126.1

0.568846138139883894

126.2

0.568757244368957198

126.3

0.568668659947218739

126.4

0.568580383243293467

126.5

0.568492412630332490

126.6

0.568404746486002907

126.7

0.568317383192477773

126.8

0.568230321136426178

126.9

0.568143558709003460

127.0

0.568057094305841534

127.1

0.567970926327039345

127.2

0.567885053177153445

127.3

0.567799473265188686

127.4

0.567714185004589038

127.5

0.567629186813228522

127.6

0.567544477113402269

127.7

0.567460054331817687

127.8

0.567375916899585755

127.9

0.567292063252212430

128.0

0.567208491829590167

128.1

0.567125201075989562

128.2

0.567042189440051107

128.3

0.566959455374777052

128.4

0.566876997337523396

128.5

0.566794813789991977

128.6

0.566712903198222681

128.7

0.566631264032585763

128.8

0.566549894767774278

128.9

0.566468793882796622

129.0

0.566387959860969187

129.1

0.566307391189909116

129.2

0.566227086361527183

129.3

0.566147043872020760

129.4

0.566067262221866915

129.5

0.565987739915815596

129.6

0.565908475462882934

129.7

0.565829467376344650

129.8

0.565750714173729562

129.9

0.565672214376813205

130.0

0.565593966511611547

130.1

0.565515969108374811

130.2

0.565438220701581404

130.3

0.565360719829931943

130.4

0.565283465036343387

130.5

0.565206454867943263

130.6

0.565129687876064004

130.7

0.565053162616237375

130.8

0.564976877648189006

130.9

0.564900831535833023

131.0

0.564825022847266775

131.1

0.564749450154765658

131.2

0.564674112034778042

131.3

0.564599007067920284

131.4

0.564524133838971854

131.5

0.564449490936870533

131.6

0.564375076954707731

131.7

0.564300890489723878

131.8

0.564226930143303925

131.9

0.564153194520972927

132.0

0.564079682232391725

132.1

0.564006391891352719

132.2

0.563933322115775729

132.3

0.563860471527703955

132.4

0.563787838753300016

132.5

0.563715422422842092

132.6

0.563643221170720146

132.7

0.563571233635432237

132.8

0.563499458459580924

132.9

0.563427894289869758

133.0

0.563356539777099854

133.1

0.563285393576166563

133.2

0.563214454346056217

133.3

0.563143720749842966

133.4

0.563073191454685703

133.5

0.563002865131825068

133.6

0.562932740456580539

133.7

0.562862816108347606

133.8

0.562793090770595030

133.9

0.562723563130862182

134.0

0.562654231880756464

134.1

0.562585095715950814

134.2

0.562516153336181295

134.3

0.562447403445244751

134.4

0.562378844750996563

134.5

0.562310475965348467

134.6

0.562242295804266462

134.7

0.562174302987768793

134.8

0.562106496239924009

134.9

0.562038874288849103

135.0

0.561971435866707731

135.1

0.561904179709708498

135.2

0.561837104558103330

135.3

0.561770209156185920

135.4

0.561703492252290240

135.5

0.561636952598789142

135.6

0.561570588952093019

135.7

0.561504400072648554

135.8

0.561438384724937527

135.9

0.561372541677475703

136.0

0.561306869702811796

136.1

0.561241367577526497

136.2

0.561176034082231574

136.3

0.561110868001569046

136.4

0.561045868124210427

136.5

0.560981033242856039

136.6

0.560916362154234389

136.7

0.560851853659101629

136.8

0.560787506562241064

136.9

0.560723319672462747

137.0

0.560659291802603129

137.1

0.560595421769524782

137.2

0.560531708394116184

137.3

0.560468150501291576

137.4

0.560404746919990877

137.5

0.560341496483179671

137.6

0.560278398027849252

137.7

0.560215450395016741

137.8

0.560152652429725256

137.9

0.560090002981044158

138.0

0.560027500902069346

138.1

0.559965145049923628

138.2

0.559902934285757139

138.3

0.559840867474747835

138.4

0.559778943486102038

138.5

0.559717161193055043

138.6

0.559655519472871790

138.7

0.559594017206847587

138.8

0.559532653280308900

138.9

0.559471426582614198

139.0

0.559410336007154854

139.1

0.559349380451356111

139.2

0.559288558816678093

139.3

0.559227870008616886

139.4

0.559167312936705668

139.5

0.559106886514515895

139.6

0.559046589659658544

139.7

0.558986421293785409

139.8

0.558926380342590457

139.9

0.558866465735811232

140.0

0.558806676407230314

140.1

0.558747011294676832

140.2

0.558687469340028032

140.3

0.558628049489210895

140.4

0.558568750692203803

140.5

0.558509571903038265

140.6

0.558450512079800688

140.7

0.558391570184634200

140.8

0.558332745183740523

140.9

0.558274036047381897

141.0

0.558215441749883050

141.1

0.558156961269633222

141.2

0.558098593589088234

141.3

0.558040337694772603

141.4

0.557982192577281710

141.5

0.557924157231284011

141.6

0.557866230655523296

141.7

0.557808411852820996

141.8

0.557750699830078531

141.9

0.557693093598279709

142.0

0.557635592172493169

142.1

0.557578194571874862

142.2

0.557520899819670588

142.3

0.557463706943218564

142.4

0.557406614973952049

142.5

0.557349622947401997

142.6

0.557292729903199764

142.7

0.557235934885079854

142.8

0.557179236940882702

142.9

0.557122635122557509

143.0

0.557066128486165101

143.1

0.557009716091880849

143.2

0.556953397003997613

143.3

0.556897170290928729

143.4

0.556841035025211046

143.5

0.556784990283507982

143.6

0.556729035146612640

143.7

0.556673168699450946

143.8

0.556617390031084832

143.9

0.556561698234715453

144.0

0.556506092407686446

144.1

0.556450571651487218

144.2

0.556395135071756278

144.3

0.556339781778284594

144.4

0.556284510885019001

144.5

0.556229321510065626

144.6

0.556174212775693359

144.7

0.556119183808337357

144.8

0.556064233738602580

144.9

0.556009361701267354

145.0

0.555954566835286981

145.1

0.555899848283797366

145.2

0.555845205194118689

145.3

0.555790636717759101

145.4

0.555736142010418452

145.5

0.555681720231992054

145.6

0.555627370546574471

145.7

0.555573092122463338

145.8

0.555518884132163216

145.9

0.555464745752389468

146.0

0.555410676164072174

146.1

0.555356674552360062

146.2

0.555302740106624479

146.3

0.555248872020463384

146.4

0.555195069491705372

146.5

0.555141331722413718

146.6

0.555087657918890455

146.7

0.555034047291680480

146.8

0.554980499055575675

146.9

0.554927012429619066

147.0

0.554873586637109001

147.1

0.554820220905603352

147.2

0.554766914466923749

147.3

0.554713666557159824

147.4

0.554660476416673497

147.5

0.554607343290103271

147.6

0.554554266426368556

147.7

0.554501245078674016

147.8

0.554448278504513937

147.9

0.554395365965676619

148.0

0.554342506728248785

148.1

0.554289700062620018

148.2

0.554236945243487214

148.3

0.554184241549859060

148.4

0.554131588265060525

148.5

0.554078984676737377

148.6

0.554026430076860724

148.7

0.553973923761731559

148.8

0.553921465031985341

148.9

0.553869053192596583

149.0

0.553816687552883462

149.1

0.553764367426512452

149.2

0.553712092131502964

149.3

0.553659860990232010

149.4

0.553607673329438885

149.5

0.553555528480229863

149.6

0.553503425778082907

149.7

0.553451364562852400

149.8

0.553399344178773889

149.9

0.553347363974468842

150.0

0.553295423302949424

150.1

0.553243521521623287

150.2

0.553191657992298367

150.3

0.553139832081187710

150.4

0.553088043158914296

150.5

0.553036290600515884

150.6

0.552984573785449870

150.7

0.552932892097598155

150.8

0.552881244925272030

150.9

0.552829631661217066

151.0

0.552778051702618022

151.1

0.552726504451103760

151.2

0.552674989312752175

151.3

0.552623505698095134

151.4

0.552572053022123424

151.5

0.552520630704291713

151.6

0.552469238168523517

151.7

0.552417874843216183

151.8

0.552366540161245875

151.9

0.552315233559972570

152.0

0.552263954481245067

152.1

0.552212702371406001

152.2

0.552161476681296863

152.3

0.552110276866263033

152.4

0.552059102386158818

152.5

0.552007952705352496

152.6

0.551956827292731369

152.7

0.551905725621706820

152.8

0.551854647170219382

152.9

0.551803591420743807

153.0

0.551752557860294142

153.1

0.551701545980428816

153.2

0.551650555277255724

153.3

0.551599585251437321

153.4

0.551548635408195723

153.5

0.551497705257317807

153.6

0.551446794313160316

153.7

0.551395902094654973

153.8

0.551345028125313594

153.9

0.551294171933233206

154.0

0.551243333051101167

154.1

0.551192511016200291

154.2

0.551141705370413974

154.3

0.551090915660231324

154.4

0.551040141436752290

154.5

0.550989382255692798

154.6

0.550938637677389884

154.7

0.550887907266806829

154.8

0.550837190593538300

154.9

0.550786487231815485

155.0

0.550735796760511234

155.1

0.550685118763145198

155.2

0.550634452827888967

155.3

0.550583798547571215

155.4

0.550533155519682832

155.5

0.550482523346382071

155.6

0.550431901634499679

155.7

0.550381289995544042

155.8

0.550330688045706315

155.9

0.550280095405865561

156.0

0.550229511701593885

156.1

0.550178936563161561

156.2

0.550128369625542168

156.3

0.550077810528417714

156.4

0.550027258916183762

156.5

0.549976714437954553

156.6

0.549926176747568126

156.7

0.549875645503591435

156.8

0.549825120369325461

156.9

0.549774601012810325

157.0

0.549724087106830392

157.1

0.549673578328919376

157.2

0.549623074361365439

157.3

0.549572574891216284

157.4

0.549522079610284248

157.5

0.549471588215151383

157.6

0.549421100407174546

157.7

0.549370615892490464

157.8

0.549320134382020818

157.9

0.549269655591477296

158.0

0.549219179241366666

158.1

0.549168705056995822

158.2

0.549118232768476838

158.3

0.549067762110732011

158.4

0.549017292823498895

158.5

0.548966824651335340

158.6

0.548916357343624508

158.7

0.548865890654579899

158.8

0.548815424343250356

158.9

0.548764958173525078

159.0

0.548714491914138609

159.1

0.548664025338675836

159.2

0.548613558225576971

159.3

0.548563090358142524

159.4

0.548512621524538276

159.5

0.548462151517800241

159.6

0.548411680135839613

159.7

0.548361207181447720

159.8

0.548310732462300955

159.9

0.548260255790965709

160.0

0.548209776984903293

160.1

0.548159295866474848

160.2

0.548108812262946250

160.3

0.548058326006493010

160.4

0.548007836934205155

160.5

0.547957344888092111

160.6

0.547906849715087572

160.7

0.547856351267054358

160.8

0.547805849400789271

160.9

0.547755343978027932

161.0

0.547704834865449619

161.1

0.547654321934682088

161.2

0.547603805062306389

161.3

0.547553284129861670

161.4

0.547502759023849971

161.5

0.547452229635741015

161.6

0.547401695861976975

161.7

0.547351157603977251

161.8

0.547300614768143216

161.9

0.547250067265862971

162.0

0.547199515013516076

162.1

0.547148957932478279

162.2

0.547098395949126230

162.3

0.547047828994842192

162.4

0.546997257006018732

162.5

0.546946679924063409

162.6

0.546896097695403450

162.7

0.546845510271490414

162.8

0.546794917608804852

162.9

0.546744319668860941

163.0

0.546693716418211130

163.1

0.546643107828450757

163.2

0.546592493876222666

163.3

0.546541874543221804

163.4

0.546491249816199823

163.5

0.546440619686969654

163.6

0.546389984152410082

163.7

0.546339343214470306

163.8

0.546288696880174492

163.9

0.546238045161626309

164.0

0.546187388076013463

164.1

0.546136725645612213

164.2

0.546086057897791883

164.3

0.546035384865019355

164.4

0.545984706584863563

164.5

0.545934023099999965

164.6

0.545883334458215017

164.7

0.545832640712410620

164.8

0.545781941920608575

164.9

0.545731238145955016

165.0

0.545680529456724835

165.1

0.545629815926326098

165.2

0.545579097633304453

165.3

0.545528374661347521

165.4

0.545477647099289286

165.5

0.545426915041114468

165.6

0.545376178585962886

165.7

0.545325437838133820

165.8

0.545274692907090351

165.9

0.545223943907463699

166.0

0.545173190959057551

166.1

0.545122434186852373

166.2

0.545071673721009724

166.3

0.545020909696876548

166.4

0.544970142254989464

166.5

0.544919371541079050

166.6

0.544868597706074106

166.7

0.544817820906105918

166.8

0.544767041302512513

166.9

0.544716259061842897

167.0

0.544665474355861294

167.1

0.544614687361551371

167.2

0.544563898261120452

167.3

0.544513107242003735

167.4

0.544462314496868482

167.5

0.544411520223618222

167.6

0.544360724625396929

167.7

0.544309927910593204

167.8

0.544259130292844439

167.9

0.544208331991040982

168.0

0.544157533229330291

168.1

0.544106734237121082

168.2

0.544055935249087463

168.3

0.544005136505173078

168.4

0.543954338250595220

168.5

0.543903540735848962

168.6

0.543852744216711263

168.7

0.543801948954245079

168.8

0.543751155214803457

168.9

0.543700363270033643

169.0

0.543649573396881155

169.1

0.543598785877593880

169.2

0.543548000999726143

169.3

0.543497219056142788

169.4

0.543446440345023238

169.5

0.543395665169865567

169.6

0.543344893839490550

169.7

0.543294126668045728

169.8

0.543243363975009448

169.9

0.543192606085194919

170.0

0.543141853328754248

170.1

0.543091106041182484

170.2

0.543040364563321655

170.3

0.542989629241364797

170.4

0.542938900426859991

170.5

0.542888178476714387

170.6

0.542837463753198233

170.7

0.542786756623948899

170.8

0.542736057461974897

170.9

0.542685366645659910

171.0

0.542634684558766802

171.1

0.542584011590441647

171.2

0.542533348135217740

171.3

0.542482694593019624

171.4

0.542432051369167100

171.5

0.542381418874379251

171.6

0.542330797524778461

171.7

0.542280187741894437

171.8

0.542229589952668223

171.9

0.542179004589456234

172.0

0.542128432090034273

172.1

0.542077872897601558

172.2

0.542027327460784759

172.3

0.541976796233642022

172.4

0.541926279675667006

172.5

0.541875778251792924

172.6

0.541825292432396587

172.7

0.541774822693302445

172.8

0.541724369515786641

172.9

0.541673933386581070

173.0

0.541623514797877435

173.1

0.541573114247331314

173.2

0.541522732238066238

173.3

0.541472369278677762

173.4

0.541422025883237557

173.5

0.541371702571297498

173.6

0.541321399867893765

173.7

0.541271118303550953

173.8

0.541220858414286181

173.9

0.541170620741613227

174.0

0.541120405832546651

174.1

0.541070214239605942

174.2

0.541020046520819671

174.3

0.540969903239729654

174.4

0.540919784965395123

174.5

0.540869692272396911

174.6

0.540819625740841651

174.7

0.540769585956365979

174.8

0.540719573510140756

174.9

0.540669588998875303

175.0

0.540619633024821646

175.1

0.540569706195778772

175.2

0.540519809125096910

175.3

0.540469942431681814

175.4

0.540420106739999070

175.5

0.540370302680078414

175.6

0.540320530887518067

175.7

0.540270792003489088

175.8

0.540221086674739744

175.9

0.540171415553599894

176.0

0.540121779297985390

176.1

0.540072178571402513

176.2

0.540022614042952400

176.3

0.539973086387335515

176.4

0.539923596284856124

176.5

0.539874144421426805

176.6

0.539824731488572963

176.7

0.539775358183437382

176.8

0.539726025208784787

176.9

0.539676733273006434

177.0

0.539627483090124728

177.1

0.539578275379797853

177.2

0.539529110867324437

177.3

0.539479990283648241

177.4

0.539430914365362862

177.5

0.539381883854716477

177.6

0.539332899499616609

177.7

0.539283962053634912

177.8

0.539235072276011997

177.9

0.539186230931662274

178.0

0.539137438791178832

178.1

0.539088696630838347

178.2

0.539040005232606015

178.3

0.538991365384140521

178.4

0.538942777878799039

178.5

0.538894243515642261

178.6

0.538845763099439462

178.7

0.538797337440673599

178.8

0.538748967355546437

178.9

0.538700653665983722

179.0

0.538652397199640374

179.1

0.538604198789905732

179.2

0.538556059275908823

179.3

0.538507979502523671

179.4

0.538459960320374654

179.5

0.538412002585841883

179.6

0.538364107161066634

179.7

0.538316274913956815

179.8

0.538268506718192470

179.9

0.538220803453231335

180.0

0.538173166004314420

180.1

0.538125595262471652

180.2

0.538078092124527549

180.3

0.538030657493106942

180.4

0.537983292276640742

180.5

0.537935997389371756

180.6

0.537888773751360542

180.7

0.537841622288491320

180.8

0.537794543932477923

180.9

0.537747539620869804

181.0

0.537700610297058087

181.1

0.537653756910281674

181.2

0.537606980415633393

181.3

0.537560281774066212

181.4

0.537513661952399495

181.5

0.537467121923325314

181.6

0.537420662665414816

181.7

0.537374285163124650

181.8

0.537327990406803437

181.9

0.537281779392698314

182.0

0.537235653122961519

182.1

0.537189612605657046

182.2

0.537143658854767355

182.3

0.537097792890200141

182.4

0.537052015737795167

182.5

0.537006328429331154

182.6

0.536960732002532742

182.7

0.536915227501077506

182.8

0.536869815974603038

182.9

0.536824498478714101

183.0

0.536779276074989843

183.1

0.536734149830991077

183.2

0.536689120820267635

183.3

0.536644190122365785

183.4

0.536599358822835724

183.5

0.536554628013239135

183.6

0.536509998791156819

183.7

0.536465472260196404

183.8

0.536421049530000119

183.9

0.536376731716252648

184.0

0.536332519940689060

184.1

0.536288415331102815

184.2

0.536244419021353842

184.3

0.536200532151376704

184.4

0.536156755867188839

184.5

0.536113091320898878

184.6

0.536069539670715051

184.7

0.536026102080953668

184.8

0.535982779722047691

184.9

0.535939573770555386

185.0

0.535896485409169060

185.1

0.535853515826723890

185.2

0.535810666218206830

185.3

0.535767937784765620

185.4

0.535725331733717869

185.5

0.535682849278560248

185.6

0.535640491638977752

185.7

0.535598260040853076

185.8

0.535556155716276072

185.9

0.535514179903553309

186.0

0.535472333847217722

186.1

0.535430618798038363

186.2

0.535389036013030255

186.3

0.535347586755464331

186.4

0.535306272294877495

186.5

0.535265093907082762

186.6

0.535224052874179521

186.7

0.535183150484563889

186.8

0.535142388032939179

186.9

0.535101766820326468

187.0

0.535061288154075277

187.1

0.535020953347874361

187.2

0.534980763721762604

187.3

0.534940720602140030

187.4

0.534900825321778928

187.5

0.534861079219835085

187.6

0.534821483641859140

187.7

0.534782039939808050

187.8

0.534742749472056679

187.9

0.534703613603409499

188.0

0.534664633705112422

188.1

0.534625811154864736

188.2

0.534587147336831186

188.3

0.534548643641654160

188.4

0.534510301466466009

188.5

0.534472122214901499

188.6

0.534434107297110377

188.7

0.534396258129770082

188.8

0.534358576136098573

188.9

0.534321062745867301

189.0

0.534283719395414306

189.1

0.534246547527657453

189.2

0.534209548592107806

189.3

0.534172724044883133

189.4

0.534136075348721560

189.5

0.534099603972995353

189.6

0.534063311393724855

189.7

0.534027199093592560

189.8

0.533991268561957331

189.9

0.533955521294868763

190.0

0.533919958795081703

190.1

0.533884582572070910

190.2

0.533849394142045869

190.3

0.533814395027965757

190.4

0.533779586759554564

190.5

0.533744970873316366

190.6

0.533710548912550764

190.7

0.533676322427368469

190.8

0.533642292974707052

190.9

0.533608462118346864

191.0

0.533574831428927104

191.1

0.533541402483962066

191.2

0.533508176867857542

191.3

0.533475156171927396

191.4

0.533442341994410316

191.5

0.533409735940486722

191.6

0.533377339622295859

191.7

0.533345154658953063

191.8

0.533313182676567191

191.9

0.533281425308258256

192.0

0.533249884194175207

192.1

0.533218560981513919

192.2

0.533187457324535354

192.3

0.533156574884583905

192.4

0.533125915330105930

192.5

0.533095480336668478

192.6

0.533065271586978199

192.7

0.533035290770900450

192.8

0.533005539585478588

192.9

0.532976019734953472

193.0

0.532946732930783148

193.1

0.532917680891662743

193.2

0.532888865343544556

193.3

0.532860288019658354

193.4

0.532831950660531867

193.5

0.532803855014011502

193.6

0.532776002835283254

193.7

0.532748395886893832

193.8

0.532721035938772000

193.9

0.532693924768250130

194.0

0.532667064160085970

194.1

0.532640455906484634

194.2

0.532614101807120812

194.3

0.532588003669161203

194.4

0.532562163307287166

194.5

0.532536582543717610

194.6

0.532511263208232100

194.7

0.532486207138194206

194.8

0.532461416178575075

194.9

0.532436892181977240

195.0

0.532412637008658674

195.1

0.532388652526557075

195.2

0.532364940611314390

195.3

0.532341503146301598

195.4

0.532318342022643722

195.5

0.532295459139245094

195.6

0.532272856402814881

195.7

0.532250535727892847

195.8

0.532228499036875380

195.9

0.532206748260041779

196.0

0.532185285335580790

196.1

0.532164112209617410

196.2

0.532143230836239958

196.3

0.532122643177527411

196.4

0.532102351203577000

196.5

0.532082356892532092

196.6

0.532062662230610333

196.7

0.532043269212132078

196.8

0.532024179839549092

196.9

0.532005396123473534

197.0

0.531986920082707226

197.1

0.531968753744271207

197.2

0.531950899143435580

197.3

0.531933358323749639

197.4

0.531916133337072304

197.5

0.531899226243602845

197.6

0.531882639111911902

197.7

0.531866374018972817

197.8

0.531850433050193258

197.9

0.531834818299447161

198.0

0.531819531869106975

198.1

0.531804575870076222

198.2

0.531789952421822375

198.3

0.531775663652410045

198.4

0.531761711698534501

198.5

0.531748098705555507

198.6

0.531734826827531483

198.7

0.531721898227254002

198.8

0.531709315076282618

198.9

0.531697079554980023

199.0

0.531685193852547551

199.1

0.531673660167061016

199.2

0.531662480705506902

199.3

0.531651657683818891

199.4

0.531641193326914748

199.5

0.531631089868733559

199.6

0.531621349552273318

199.7

0.531611974629628889

199.8

0.531602967362030312

199.9

0.531594330019881491

200.0

0.531586064882799239

200.1

0.531578174239652705

200.2

0.531570660388603172

200.3

0.531563525637144231

200.4

0.531556772302142347

200.5

0.531550402709877796

200.6

0.531544419196086011

200.7

0.531538824105999297

200.8

0.531533619794388961

200.9

0.531528808625607833

201.0

0.531524392973633192

201.1

0.531520375222110093

201.2

0.531516757764395117

201.3

0.531513543003600516

201.4

0.531510733352638795

201.5

0.531508331234267698

201.6

0.531506339081135630

201.7

0.531504759335827503

201.8

0.531503594450911012

201.9

0.531502846888983349

202.0

0.531502519122718360

202.1

0.531502613634914140

202.2

0.531503132918541079

202.3

0.531504079476790356

202.4

0.531505455823122893

202.5

0.531507264481318767

202.6

0.531509507985527081

202.7

0.531512188880316307

202.8

0.531515309720725104

202.9

0.531518873072313600

203.0

0.531522881511215167

203.1

0.531527337624188674

203.2

0.531532244008671226

203.3

0.531537603272831404

203.4

0.531543418035622992

203.5

0.531549690926839214

203.6

0.531556424587167473

203.7

0.531563621668244602

203.8

0.531571284832712627

203.9

0.531579416754275055

204.0

0.531588020117753679

204.1

0.531597097619145921

204.2

0.531606651965682701

204.3

0.531616685875886844

204.4

0.531627202079632037

204.5

0.531638203318202329

204.6

0.531649692344352179

204.7

0.531661671922367076

204.8

0.531674144828124708

204.9

0.531687113849156699

205.0

0.531700581784710932

205.1

0.531714551445814437

205.2

0.531729025655336861

205.3

0.531744007248054544

205.4

0.531759499070715161

205.5

0.531775503982102986

205.6

0.531792024853104754

205.7

0.531809064566776123

205.8

0.531826626018408762

205.9

0.531844712115598061